

Welcome to the EduMIPS64 documentation!

EduMIPS64 is a MIPS64 Instruction Set Architecture (ISA) simulator. It is
designed to be used to execute small programs that use the subset of the
MIPS64 ISA implemented by the simulator, allowing the user to see how
instructions behave in the pipeline, how stalls are handled by the CPU, the
status of registers and memory and much more. It is both a simulator and a
visual debugger.

The website for the project is http://www.edumips.org, and the code is hosted
at http://github.com/EduMIPS64/edumips64. If you find any bugs, or have any
suggestion for improving the simulator, please open an issue on github or send
an email at bugs@edumips.org.

EduMIPS64 is developed by a group of students of the University of Catania
(Italy), and started as a clone of WinMIPS64, even if now there are lots of
differences between the two simulators.

This manual will introduce you to EduMIPS64, and will cover some details on
how to use it.

The first chapter of this manual covers the format of source files accepted
by the simulator, describing the data types and the directives, in addition
to command line parameters. In the second chapter there’s an overview of the
subset of the MIPS64 instruction set that is accepted by EduMIPS64, with all
the needed parameters and indications to use them. The third chapter is a
description of the Floating Point Unit and its instruction set.
The fourth chapter is a description of the user interface of EduMIPS64, that
explains the purpose of each frame and menu, along with a description of the
configuration dialog, the Dinero frontend dialog, the Manual dialog and
command line options. The fifth chapter contains some useful examples.

This manual describes EduMIPS64 version 1.3.0.

	Source files format
	Memory limits

	The .data section

	The .code section

	The #include command

	The instruction set
	ALU Instructions

	Load/Store instructions

	Flow control instructions

	The SYSCALL instruction

	Other instructions

	Floating Point Unit
	Special values

	Exception configuration

	The .double directive

	The FCSR register

	Instruction set

	The user interface
	The menu bar

	Frames

	Dialogs

	Command line options

	Code Examples
	SYSCALL

Source files format

EduMIPS64 tries to follow the conventions used in other MIPS64 and DLX
simulators, so that old time users will not be confused by its syntax.

There are two sections in a source file, the data section and the
code section, introduced respectively by the .data and the
.code directives. In the following listing you can see a very basic
EduMIPS64 program:

; This is a comment
 .data
label: .word 15 ; This is an inline comment

 .code
 daddi r1, r0, 0
 syscall 0

To distinguish the various parts of each source code line, any combination of
spaces and tabs can be used, as the parser ignores multiple spaces and only
detects whitespaces to separate tokens.

Comments can be specified using the «;» character, everything that follows
that character will be ignored. So a comment can be used «inline» (after the
directive) or on a row by itself.

Labels can be used in the code to reference a memory cell or an
instruction. They are case insensitive. Only a label for each source code line
can be used. The label can be specified one or more rows above the effective
data declaration or instruction, provided that there’s nothing, except for
comments and empty lines, between the label and the declaration.

Memory limits

EduMIPS64 has a fixed memory size for both data (the .data section, capped
at 640 kB – i.e., 80000 64-bit values) and instructions (the .code section,
capped at 128 kB – i.e., 32000 instructions, each occupying 32 bits).

These limits are hardcoded in the simulator.

The .data section

The data section contains commands that specify how the memory must be
filled before program execution starts. The general form of a .data command
is:

[label:] .datatype value1 [, value2 [, ...]]

EduMIPS64 supports different data types, that are described in the following
table.

	Type

	Directive

	Bits required

	Byte

	.byte

	8

	Half word

	.word16

	16

	Word

	.word32

	32

	Double Word

	.word or .word64

	64

Please note that a double word can be introduced either by the .word
directive or by the .word64 directive.

All the data types are interpreted as signed. This means that integer literals
in the .data section must be between -2^(n-1) and 2^(n-1) - 1 (inclusive).

There is a big difference between declaring a list of data elements using a
single directive or by using multiple directives of the same type. EduMIPS64
starts writing from the next 64-bit double word as soon as it finds a
datatype identifier, so the first .byte statement in the following listing
will put the numbers 1, 2, 3 and 4 in the space of 4 bytes, taking 32 bits,
while code in the next four rows will put each number in a different memory
cell, occupying 32 bytes:

.data
.byte 1, 2, 3, 4
.byte 1
.byte 2
.byte 3
.byte 4

In the following table, the memory is represented using byte-sized cells
and each row is 64 bits wide. The address on the left side of each row of the
table refers to the right-most memory cell, that has the lowest address of the
eight cells in each line.

	0

	0

	0

	0

	0

	4

	3

	2

	1

	8

	0

	0

	0

	0

	0

	0

	0

	1

	16

	0

	0

	0

	0

	0

	0

	0

	2

	24

	0

	0

	0

	0

	0

	0

	0

	3

	36

	0

	0

	0

	0

	0

	0

	0

	4

There are some special directives that need to be discussed: .space,
.ascii and .asciiz.

The .space directive is used to leave some free space in memory. It
accepts as a parameter an integer, that indicates the number of bytes that must
be left empty. It is handy when you must save some space in memory for the
results of your computations.

The .ascii directive accepts strings containing any of the ASCII
characters, and some special C-like escaping sequences, that are described in
the following table, and puts those strings in memory.

	Escaping sequence

	Meaning

	ASCII code

	\0

	Null byte

	0

	\t

	Horizontal tabulation

	9

	\n

	Newline character

	10

	\»

	Literal quote character

	34

	\

	Literal backslash character

	92

The .asciiz directive behaves exactly like the .ascii command,
with the difference that it automatically ends the string with a null byte.

The .code section

The code section contains commands that specify how the memory must be
filled when the program will start. The general form of a .code command
is:

[label:] instruction [param1 [, param2 [, param3]]]

The code section can be specified with the .text alias.

The number and the type of parameters depends on the instruction itself.

Instructions can take three types of parameters:

	Registers a register parameter is indicated by an uppercase
or lowercase «r», or a $, followed by the number of the register (between
0 and 31), as in «r4», «R4» or «$4»;

	Immediate values an immediate value can be a number or a
label; the number can be specified in base 10 or in base 16: base 10 numbers
are simply inserted by writing the number, while base 16 number are inserted
by putting before the number the prefix «0x». Immediate values can be preceded
by the # character.

	Address an address is composed by an immediate value followed
by a register name enclosed in brackets. The value of the register will be
used as base, the value of the immediate will be the offset.

The size of immediate values is limited by the number of bits that are
available in the bit encoding of the instruction.

When 16-bit immediates can be used, for example in ALU I-Type instructions,
it’s also possible to use as an immediate value a memory label. The assembler
will put as immediate value the memory address the label points to.

You can use standard MIPS assembly aliases to address the first 32 registers,
appending the alias to one of the standard register prefixes like «r», «$»
and «R». See the next table.

	Register

	Alias

	0

	zero

	1

	at

	2

	v0

	3

	v1

	4

	a0

	5

	a1

	6

	a2

	7

	a3

	8

	t0

	9

	t1

	10

	t2

	11

	t3

	12

	t4

	13

	t5

	14

	t6

	15

	t7

	16

	s0

	17

	s1

	18

	s2

	19

	s3

	20

	s4

	21

	s5

	22

	s6

	23

	s7

	24

	t8

	25

	t9

	26

	k0

	27

	k1

	28

	gp

	29

	sp

	30

	fp

	31

	ra

The #include command

Source files can contain the #include filename command, which has the
effect of putting in place of the command row the content of the file
filename.
It is useful if you want to include external routines, and it comes with a
loop-detection algorithm that will warn you if you try to do something like
«#include A.s» in file B.s and «#include B.s» in file A.s.

The instruction set

In this section we will the subset of the MIPS64 instruction set that EduMIPS64
recognizes. We can operate two different taxonomic classification: one based on
the functionality of the instructions and one based on the type of the
parameters of the instructions.

The first classification divides instruction into three categories: ALU
instructions, Load/Store instructions, Flow control instructions. The next
three subsections will describe each category and every instruction that
belongs to those categories.

The fourth subsection will describe instructions that do not fit in any of the
three categories.

ALU Instructions

The Arithmetic Logic Unit (in short, ALU) is a part of the execution unit of
a CPU, that has the duty of doing arithmetical and logic operations. So in
the ALU instructions group we will find those instructions that do this kind
of operations.

ALU Instructions can be divided in two groups: R-Type and I-Type.

Four of those instructions make use of two special registers: LO and HI. They
are internal CPU registers, whose value can be accessed through the
MFLO and MFHI instructions.

Here’s the list of R-Type ALU Instructions.

	AND rd, rs, rt

Executes a bitwise AND between rs and rt, and puts the result into rd.

	ADD rd, rs, rt

Sums the content of 32-bits registers rs and rt, considering them as signed
values, and puts the result into rd. If an overflow occurs then trap.

	ADDU rd, rs, rt

Sums the content of 32-bits registers rs and rt, and puts the result into rd.
No integer overflow occurs under any circumstances.

	DADD rd, rs, rt

Sums the content of 64-bits registers rs and rt, considering them as signed
values, and puts the result into rd. If an overflow occurs then trap.

	DADDU rd, rs, rt

Sums the content of 64-bits registers rs and rt, and puts the result into rd.
No integer overflow occurs under any circumstances.

	DDIV rs, rt

Executes the division between 64-bits registers rs and rt, putting the
64-bits quotient in LO and the 64-bits remainder in HI.

	DDIVU rs, rt

Executes the division between 64-bits registers rs and rt, considering them
as unsigned values and putting the 64-bits quotient in LO and the 64-bits
remainder in HI.

	DIV rs, rt

Executes the division between 32-bits registers rs and rt, putting the
32-bits quotient in LO and the 32-bits remainder in HI.

	DIVU rs, rt

Executes the division between 32-bits registers rs and rt, considering them
as unsigned values and putting the 32-bits quotient in LO and the 32-bits
remainder in HI.

	DMUHU rd, rs, rt

Executes the multiplication between 64-bits registers rs and rt,
considering them as unsigned values and putting the high-order 64-bits
doubleword of the result into register rd.

	DMULT rs, rt

Executes the multiplication between 64-bits registers rs and rt, putting
the low-order 64-bits doubleword of the result into special register LO and
the high-order 64-bits doubleword of the result into special register HI.

	DMULU rd, rs, rt

Executes the multiplication between 64-bits registers rs and rt,
considering them as unsigned values and putting the low-order 64-bits
doubleword of the result into register rd.

	DMULTU rs, rt

Executes the multiplication between 64-bits registers rs and rt,
considering them as unsigned values and putting the low-order 64-bits
doubleword of the result into special register LO and the high-order
64-bits doubleword of the result into special register HI.

	DSLL rd, rt, sa

Does a left shift of 64-bits register rt, by the amount specified in the
immediate (positive) value sa, and puts the result into 64-bits register
rd. Empty bits are padded with zeros.

	DSLLV rd, rt, rs

Does a left shift of 64-bits register rt, by the amount specified in
low-order 6-bits of rs threatd as unsigned value, and puts the result into
64-bits register rd. Empty bits are padded with zeros.

	DSRA rd, rt, sa

Does a right shift of 64-bits register rt, by the amount specified in the
immediate (positive) value sa, and puts the result into 64-bits register
rd. Empty bits are padded with zeros if the leftmost bit of rt is zero,
otherwise they are padded with ones.

	DSRAV rd, rt, rs

Does a right shift of 64-bits register rt, by the amount specified in
low-order 6-bits of rs threatd as unsigned value, and puts the result into
64-bits register rd. Empty bits are padded with zeros if the leftmost bit
of rt is zero, otherwise they are padded with ones.

	DSRL rd, rs, sa

Does a right shift of 64-bits register rs, by the amount specified in the
immediate (positive) value sa, and puts the result into 64-bits register
rd. Empty bits are padded with zeros.

	DSRLV rd, rt, rs

Does a right shift of 64-bits register rt, by the amount specified in
low-order 6-bits of rs threatd as unsigned value, and puts the result into
64-bits register rd. Empty bits are padded with zeros.

	DSUB rd, rs, rt

Subtracts the value of 64-bits register rt to 64-bits register rs,
considering them as signed values, and puts the result in rd. If an
overflow occurs then trap.

	DSUBU rd, rs, rt

Subtracts the value of 64-bits register rt to 64-bits register rs, and puts
the result in rd. No integer overflow occurs under any circumstances.

	MFLO rd

Moves the content of the special register LO into rd.

	MFHI rd

Moves the content of the special register HI into rd.

	MOVN rd, rs, rt

If rt is different from zero, then moves the content of rs into rd.

	MOVZ rd, rs, rt

If rt is equal to zero, then moves the content of rs into rd.

	MULT rs, rt

Executes the multiplication between 32-bits registers rs and rt, putting
the low-order 32-bits word of the result into special register LO and the
high-order 32-bits word of the result into special register HI.

	MULTU rs, rt

Executes the multiplication between 32-bits registers rs and rt,
considering them as unsigned values and putting the low-order 32-bits word
of the result into special register LO and the high-order 32-bits word of
the result into special register HI.

	OR rd, rs, rt

Executes a bitwise OR between rs and rt, and puts the result into rd.

	SLL rd, rt, sa

Does a left shift of 32-bits register rt, by the amount specified in the
immediate (positive) value sa, and puts the result into 32-bits register
rd. Empty bits are padded with zeros.

	SLLV rd, rt, rs

Does a left shift of 32-bits register rt, by the amount specified in
low-order 5-bits of rs threatd as unsigned value, and puts the result into
32-bits register rd. Empty bits are padded with zeros.

	SRA rd, rt, sa

Does a right shift of 32-bits register rt, by the amount specified in the
immediate (positive) value sa, and puts the result into 32-bits register
rd. Empty bits are padded with zeros if the leftmost bit of rt is zero,
otherwise they are padded with ones.

	SRAV rd, rt, rs

Does a right shift of 32-bits register rt, by the amount specified in
low-order 5-bits of rs threatd as unsigned value, and puts the result into
32-bits register rd. Empty bits are padded with zeros if the leftmost bit
of rt is zero, otherwise they are padded with ones.

	SRL rd, rs, sa

Does a right shift of 32-bits register rs, by the amount specified in the
immediate (positive) value sa, and puts the result into 32-bits register
rd. Empty bits are padded with zeros.

	SRLV rd, rt, rs

Does a right shift of 32-bits register rt, by the amount specified in
low-order 5-bits of rs threatd as unsigned value, and puts the result into
32-bits register rd. Empty bits are padded with zeros.

	SUB rd, rs, rt

Subtracts the value of 32-bits register rt to 32-bits register rs,
considering them as signed values, and puts the result in rd. If an
overflow occurs then trap.

	SUBU rd, rs, rt

Subtracts the value of 32-bits register rt to 32-bits register rs, and puts
the result in rd. No integer overflow occurs under any circumstances.

	SLT rd, rs, rt

Sets the value of rd to 1 if the value of rs is less than the value of rt,
otherwise sets it to 0. This instruction performs a signed comparison.

	SLTU rd, rs, rt

Sets the value of rd to 1 if the value of rs is less than the value of rt,
otherwise sets it to 0. This instruction performs an unsigned comparison.

	XOR rd, rs, rt

Executes a bitwise exclusive OR (XOR) between rs and rt, and puts the
result into rd.

Here’s the list of I-Type ALU Instructions.

	ADDI rt, rs, immediate

Executes the sum between 32-bits register rs and the immediate value,
putting the result in rt. This instruction considers rs and the immediate
value as signed values. If an overflow occurs then trap.

	ADDIU rt, rs, immediate

Executes the sum between 32-bits register rs and the immediate value,
putting the result in rt. No integer overflow occurs under any
circumstances.

	ANDI rt, rs, immediate

Executes the bitwise AND between rs and the immediate value, putting the
result in rt.

	DADDI rt, rs, immediate

Executes the sum between 64-bits register rs and the immediate value,
putting the result in rt. This instruction considers rs and the immediate
value as signed values. If an overflow occurs then trap.

	DADDIU rt, rs, immediate

Executes the sum between 64-bits register rs and the immediate value,
putting the result in rt. No integer overflow occurs under any
circumstances.

	DADDUI rt, rs, immediate

Executes the sum between 64-bits register rs and the immediate value,
putting the result in rt. No integer overflow occurs under any
circumstances.

	LUI rt, immediate

Loads the constant defined in the immediate value in the upper half (16
bit) of the lower 32 bits of rt, sign-extending the upper 32 bits of the
register.

	ORI rt, rs, immediate

Executes the bitwise OR between rs and the immediate value, putting the
result in rt.

	SLTI rt, rs, immediate

Sets the value of rt to 1 if the value of rs is less than the value of the
immediate, otherwise sets it to 0. This instruction performs a signed
comparison.

	SLTIU rt, rs, immediate

Sets the value of rt to 1 if the value of rs is less than the value of the
immediate, otherwise sets it to 0. This instruction performs an unsigned
comparison.

	XORI rt, rs, immediate

Executes a bitwise exclusive OR (XOR) between rs and the immediate value,
and puts the result into rt.

Load/Store instructions

This category contains all the instructions that operate transfers between
registers and the memory. All of these instructions are in the form:

[label:] instruction rt, offset(base)

Where rt is the source or destination register, depending if we are using a
store or a load instruction; offset is a label or an immediate value and base
is a register. The address is obtained by adding to the value of the register
base the immediate value offset.

The address specified must be aligned according to the data type that is
treated. Load instructions ending with «U» treat the content of the register
rt as an unsigned value.

List of load instructions:

	LB rt, offset(base)

Loads the content of the memory cell at address specified by offset and
base in register rt, treating it as a signed byte.

	LBU rt, offset(base)

Loads the content of the memory cell at address specified by offset and
base in register rt, treating it as an unsigned byte.

	LD rt, offset(base)

Loads the content of the memory cell at address specified by offset and
base in register rt, treating it as a double word.

	LH rt, offset(base)

Loads the content of the memory cell at address specified by offset and
base in register rt, treating it as a signed half word.

	LHU rt, offset(base)

Loads the content of the memory cell at address specified by offset and
base in register rt, treating it as an unsigned half word.

	LW rt, offset(base)

Loads the content of the memory cell at address specified by offset and
base in register rt, treating it as a signed word.

	LWU rt, offset(base)

Loads the content of the memory cell at address specified by offset and
base in register rt, treating it as a signed word.

List of store instructions:

	SB rt, offset(base)

Stores the content of register rt in the memory cell specified by offset
and base, treating it as a byte.

	SD rt, offset(base)

Stores the content of register rt in the memory cell specified by offset
and base, treating it as a double word.

	SH rt, offset(base)

Stores the content of register rt in the memory cell specified by offset
and base, treating it as a half word.

	SW rt, offset(base)

Stores the content of register rt in the memory cell specified by offset
and base, treating it as a word.

Flow control instructions

Flow control instructions are used to alter the order of instructions that
are fetched by the CPU. We can make a distinction between these instructions:
R-Type, I-Type and J-Type.

Those instructions effectively executes the jump in the ID stage, so often an
useless fetch is executed. In this case, two instructions are removed from the
pipeline, and the branch taken stalls counter is incremented by two units.

List of R-Type flow control instructions:

	JALR rs

Puts the content of rs into the program counter, and puts into R31 the
address of the instruction that follows the JALR instruction, the return
value.

	JR rs

Puts the content of rs into the program counter.

List of I-Type flow control instructions:

	B offset

Unconditionally jumps to offset

	BEQ rs, rt, offset

Jumps to offset if rs is equal to rt.

	BEQZ rs, offset

Jumps to offset if rs is equal to zero.

	BGEZ rs, offset

If rs is greather than or equal to zero, does a PC-relative jump to offset.

	BNE rs, rt, offset

Jumps to offset if rs is not equal to rt.

	BNEZ rs, offset

Jumps to offset if rs is not equal to zero.

List of J-Type flow control instructions:

	J target

Puts the immediate value target into the program counter.

	JAL target

Puts the immediate value target into the program counter, and puts into R31
the address of the instruction that follows the JAL instruction, the return
value.

The SYSCALL instruction

The SYSCALL instruction offers to the programmer an operating-system-like
interface, making available six different system calls.

System calls expect that the address of their parameters is stored in register
R14 ($t6), and will put their return value in register R1 ($at).

System calls follow as much as possible the POSIX convention.

SYSCALL 0 - exit()

SYSCALL 0 does not expect any parameter, nor it returns anything. It simply
stops the simulator.

Note that if the simulator does not find SYSCALL 0 in the source code, or any
of its equivalents (HALT - TRAP 0), it will be added automatically at the end
of the source.

SYSCALL 1 - open()

The SYSCALL 1 expects two parameters: a zero-terminated string that indicates
the pathname of the file that must be opened, and a double word containing an
integer that indicates the flags that must be used to specify how to open the
file.

This integer must be built summing the flags that you want to use, choosing
them from the following list:

	O_RDONLY (0x01) Opens the file in read only mode;

	O_WRONLY (0x02) Opens the file in write only mode;

	O_RDWR (0x03) Opens the file in read/write mode;

	O_CREAT (0x04) Creates the file if it does not exist;

	O_APPEND (0x08) In write mode, appends written text at the end of the file;

	O_TRUNC (0x08) In write mode, deletes the content of the file as soon as it
is opened.

It is mandatory to specify one of the first three modes. The fourth and the
fifth modes are exclusive, you can not specify O_APPEND if you specify O_TRUNC
(and vice versa).

You can specify a combination of modes by simply adding the integer values of
those flags. For instance, if you want to open a file in write only mode and
append the written text to the end of file, you should specify the mode 2 + 8
= 10.

The return value of the system call is the new file descriptor associated with
the file, that can be further used with the other system calls. If there is an
error, the return value will be -1.

SYSCALL 2 - close()

SYSCALL 2 expects only one parameter, the file descriptor of the file that is
closed.

If the operation ends successfully, SYSCALL 2 will return 0, otherwise it will
return -1. Possible causes of failure are the attempt to close a non-existent
file descriptor or the attempt to close file descriptors 0, 1 or 2, that are
associated respectively to standard input, standard output and standard error.

SYSCALL 3 - read()

SYSCALL 3 expects three parameters: the file descriptor to read from, the
address where the read data must be put into, the number of bytes to read.

If the first parameter is 0, the simulator will prompt the user for an input,
via an input dialog. If the length of the input is greater than the number of
bytes that have to be read, the simulator will show again the message dialog.

It returns the number of bytes that have effectively been read, or -1 if the
read operation fails. Possible causes of failure are the attempt to read from
a non-existent file descriptor, the attempt to read from file descriptors 1
(standard output) or 2 (standard error) or the attempt to read from a
write-only file descriptor.

SYSCALL 4 - write()

SYSCALL 4 expects three parameters: the file descriptor to write to, the
address where the data must be read from, the number of bytes to write.

If the first parameter is two or three, the simulator will pop the input/output
frame, and write there the read data.

It returns the number of bytes that have been written, or -1 if the write
operation fails. Possible causes of failure are the attempt to write to a
non-existent file descriptor, the attempt to write to file descriptor 0
(standard input) or the attempt to write to a read-only file descriptor.

SYSCALL 5 - printf()

SYSCALL 5 expects a variable number of parameters, the first being the address
of the so-called «format string». In the format string can be included some
placeholders, described in the following list:

	%s indicates a string parameter;

	%i indicates an integer parameter;

	%d behaves like %i;

	%% literal %

For each %s, %d or %i placeholder, SYSCALL 5 expects a parameter,
starting from the address of the previous one.

When the SYSCALL finds a placeholder for an integer parameter, it expects that
the corresponding parameter is an integer value, when if it finds a placeholder
for a string parameter, it expects as a parameter the address of the string.

The result is printed in the input/output frame, and the number of bytes
written is put into R1.

If there’s an error, -1 is written to R1.

Other instructions

In this section there are instructions that do not fit in the previous
categories.

BREAK

The BREAK instruction throws an exception that has the effect to stop the
execution if the simulator is running. It can be used for debugging purposes.

NOP

The NOP instruction does not do anything, and it’s used to create gaps in the
source code.

TRAP

The TRAP instruction is a deprecated alias for the SYSCALL instruction.

HALT

The HALT instruction is a deprecated alias for the SYSCALL 0 instruction, that
halts the simulator.

Floating Point Unit

This chapter [1] describes the Floating Point Unit (FPU) emulated in
EduMIPS64.

In the first paragraph we introduce the double format, the special floating
point values defined in the IEEE 754 standard and the exceptions that floating
point computations can raise.

In the second paragraph we explain how EduMIPS64 allows users to enable or
disable the IEEE floating point traps.

In the third paragraph we describe how double precision numbers and special
values can be specified in the source programs.

In the fourth paragraph, we introduce the FCSR register, used by the FPU to
represent its state. It contains information about rounding, the boolean
results of comparison operations and the policies for handling IEEE floating
point exceptions.

In the fifth and last paragraph, we present all the MIPS64 floating point
instructions that have been implemented in EduMIPS64.

Before starting the discussion about the FPU, we define the domain of floating
point double precision numbers as [-1.79E308,-4.94E-324] ⋃ {0} ⋃
[4.94E-324,1.79E308].

[1]
This chapter is part of the Bachelor’s degree thesis by Massimo Trubia:
«Progetto e implementazione di un modello di Floating Point Unit per un
simulatore di CPU MIPS64».

Special values

Floating point arithmetics allows the programmer to choose whether to stop the
computation or not, if invalid operations are carried on. In this scenario,
operations like the division between zeroes or square roots of negative
numbers must produce a result that, not being a number (NaN) is treated as
somehting different.

NaN or Invalid Operation

The IEEE Standard for Floating-Point Arithmetic (IEEE 754) defined that
invalid arithmetic operations can either signal the error while the program is
running (using a trap for the IEEE exception Invalid Operation) or return
as a result the special value QNan (Quit Not a Number). Another NaN value,
that inconditionally raises the same trap once it is detected as being one of
the operands, is SNan (Signalling Not a Number). This value is seldom used in
applications, and historically it has been used to initialize variables.

Zeroes or Underflows

Another special value defined by the standard is zero. Since the double format
does not include the zero in its domain, it is considered a special value.
There is a positive zero and a negative zero: the former is used when a
representation of a negative number ∈]-4.94E-324,0[) is attempted, and a
result is required (as opposed to allowing an Underflow trap), while the
latter is used when the number that should be represented is ∈ [0,4.94E-324[,
and the Underflow trap is disabled.

Infinites or Overflows

When a program attempts to represent a value with an extremely large absolute
value (∈]-∞,-1.79E308[⋃]1.79E308,+∞[), that is outside the domain of double
values, the CPU returns either -∞ or +∞. The alternative is to trigger a trap
for the exceptional Overflow condition.

Infinites can also be returned in case of a division by zero; in that case the
sign of the infinite is given by the product of the sign of the zero and the
sign of the dividend. The Divide by zero trap can be alternatively raised.

Exception configuration

EduMIPS64 allows the user to enable or disable the traps for 4 of the 5 IEEE
exceptions, through the FPU Exceptions tab in the Configure → Settings
window. If any of them is disabled, the respective special value will be
returned (as described in Special values).

The .double directive

The .double directive must be used in the .data section of source
files, and allows to allocate a memory cell for a double value.

The directive can be used in 2 ways:

variable-name: .double double_number
variable-name: .double keyword

where double_number can be represented either in extended notation
(1.0,0.003), or in scientific notation(3.7E-12,0.5E32).
keyword can be POSITIVEINFINITY, NEGATIVEINFINITY,
POSITIVEZERO, NEGATIVEZERO, SNAN e QNAN,
thus allowing to directly insert in memory the special values.

The FCSR register

The FCSR (Floating point Control Status Register) is the register that
controls several functional aspects of the FPU. It is 32 bits long and it is
represented in the statistics window.

The FCC field is 8 bits wide, from 0 to 7. The conditional instructions
(C.EQ.D,C.LT.D) use it to save the boolean result of comparisons between
two registers.

The Cause, Enables and Flag fields handle the dynamics of IEEE exceptions
described in Special values. Each of them is composed of 5 bits, V
(Invalid Operation), Z (Divide by Zero), O (Overflow), U (Underflow) and I
(Inexact); the latter is not yet used.

The Clause field bits are set if the corresponding IEEE exceptions occur
during the execution of a program.

The Enable field bits are set through the configuration window and show
the IEEE exceptions for which traps are enabled.

The Flag field shows the exceptions that have happened but, since the trap
is not enabled for that particular exception, have returned special values
(the ones described in Special values).

The RM field describes the rounding method currently in use to convert
floating point numbers to integers (see the description of the CVT.L.D
instruction).

Instruction set

This section describes the MIPS64 FPU instruction implemented by EduMIPS64;
they are listed in alphabetic order. The operations performed by the
instruction are described using a notation according to which the i-th
memory cell is represented as memory[i], and the FCC fields of the FCSR
register are FCSR_FCC[cc], cc ∈ [0,7].

In some instructions, to avoid ambiguity, the registers are represented as
GPR[i] and FPR[i], i ∈ [0,31], but in most cases we just use the
rx or fx notation, with x ∈ {d,s,t}. The three letters are used to
indicate the purpose of each register (destination, source, third). Lastly,
the values returned by conversion operations are represented with the
following notation: convert_conversiontype(register[,rounding_type]),
where the rounding_type parameter is optional.

Some examples for the FPU instructions are available at
http://www.edumips.org/attachment/wiki/Upload/FPUMaxSamples.rar.

	ADD.D fd, fs, ft

Description: fd = fs + ft

Exceptions: Overflow and underflow traps are generated if the result
cannot be represented according to IEEE 754. Invalid operation is raised if
fs or ft contain QNaN or SNan, or if an invalid operation (+∞ - ∞) is
executed.

	BC1F cc, offset

Description: if FCSR_FCC[cc] == 0 then branch

If FCSR_FCC[cc] is false, do a PC-relative branch.

Example:

C.EQ.D 7,f1,f2
BC1F 7,label

In this example, C.EQ.D checks if f1 and f2 are equal, writing
the results of the comparison in the 7th bit of the FCC field of the FCSR
register. After that, BC1F jumps to label if the result of the
comparison is 0 (false).

	BC1T cc, offset

Description: if FCSR_FCC[cc] == 1 then branch

If FCSR_FCC[cc] is true, do a PC-relative branch.

Example:

C.EQ.D 7,f1,f2
BC1T 7,label

In this example, C.EQ.D checks if f1 and f2 are equal, writing
the results of the comparison in the 7th bit of the FCC field of the FCSR
register. After that, BC1F jumps to label if the result of the
comparison is 1 (false).

	C.EQ.D cc, fs, ft

Description: FCSR_FCC[cc] = (fs==ft)

Checks if fs is equal to ft, and saves the result of the comparison
in FCSR_FCC[cc]. See examples for BC1T, BC1F.

Exceptions: Invalid Operation can be thrown if fs or ft contain
QNaN (trap is triggered if it is enabled) o SNaN (trap is always triggered).

	C.LT.D cc, fs, ft

Description: FCSR_FCC[cc] = (fs<ft)

Checks if fs is smaller than ft, and saves the result of the
comparison in FCSR_FCC[cc].

Example:

C.LT.D 2,f1,f2
BC1T 2,target

In this example, C.LT.D checks if f1 is smaller than f2, and
saves the result of the comparison in the second bit of the FCC field of the
FCSR register. After that, BC1T jumps to target if that bit is set
to 1.

Exceptions: Invalid Operation can be thrown if fs or ft contain
QNaN (trap is triggered if it is enabled) o SNaN (trap is always triggered).

	CVT.D.L fd, fs

Description: fd = convert_longToDouble(fs)

Converts a long to a double.

Example:

DMTC1 r6,f5
CVT.D.L f5,f5

In this example, DMTC1 copies the value of GPR r6 to FPR f5; after that
CVT.D.L converts the value stored in f5 from long to double. If for
instance r6 contains the value 52, after the execution of DMTC1 the
binary representation of 52 gets copied to f5. After the execution of
CVT.D.L, f5 contains the IEEE 754 representation of 52.0.

Exceptions: Invalid Operation is thrown if fs contains QNaN, SNaN or an
infinite.

	CVT.D.W fd, fs

Description: fd = convert_IntToDouble(fs)

Converts an int to a double.

Example:

MTC1 r6,f5
CVT.D.W f5,f5

In this example, MTC1 copies the lower 32 bit of the GPR r6 into the FPR
f5. Then, CVT.D.W, reads f5 as an int, and converts it to double.

If we had r6=0xAAAAAAAABBBBBBBB, after the execution of MTC1 we get
f5=0xXXXXXXXXBBBBBBBB; its upper 32 bits (XX..X) are now UNDEFINED
(haven’t been overwritten). CVT.D.W interprets f5 as an int
(f5=-1145324613), and converts it to double(f5=0xC1D1111111400000
=-1.145324613E9).

Exceptions: Invalid Operation is thrown if fs contains QNaN, SNaN or an
infinite.

	CVT.L.D fd, fs

Description: fd = convert_doubleToLong(fs, CurrentRoundingMode)

Converts a double to a long, rounding it before the conversion.

Example:

CVT.L.D f5,f5
DMFC1 r6,f5

CVT.L.D the double value in f5 to a long; then DMFC1 copies f5 to
r6; the result of this operation depends on the current rounding modality,
that can be set in the FPU Rounding tab of the Configure → Settings
window.

Rounding examples

	Tipo

	RM field

	f5 register

	r6 register

	To nearest

	0

	6.4

	6

	To nearest

	0

	6.8

	7

	To nearest

	0

	6.5

	6 (to even)

	To nearest

	0

	7.5

	8 (to even)

	Towards 0

	1

	7.1

	7

	Towards 0

	1

	-2.3

	-2

	Towards ∞

	2

	4.2

	5

	Towards ∞

	2

	-3.9

	-3

	Towards -∞

	3

	4.2

	4

	Towards -∞

	3

	-3.9

	-4

	CVT.W.D fd, fs

Description: fd = convert_DoubleToInt(fs, CurrentRoundingMode)

Converts a double to an int, using the current rounding modality.

Exceptions: Invalid Operation is thrown if fs contains an infinite value,
any NaN or the results is outside the signed int domain [-2 63, 2
63 -1]

	DIV.D fd, fs, ft

Description: fd = fs \div ft

Exceptions: Overflow or Underflow are raised if the results cannot be
represented using the IEEE 754 standard. Invalid Operation is raised if fs
or ft contain QNaN or SNan, or if an invalid operation is executed (0div0,∞
div ∞). Divide by zero is raised if a division by zero is attempted with a
dividend that is not QNaN or SNaN.

	DMFC1 rt,fs

Description: rt = fs

Executes a bit per bit copy of the FPR fs into the GPR rt.

	DMTC1 rt, fs

Description: fs = rt

Executes a bit per bit copy of the GPR rt into the FPR fs.

	L.D ft, offset(base)

Description: ft = memory[GPR[base] + offset]

Loads from memory a doubleword and stores it in ft.

Nota

L.D is not present in the MIPS64 ISA, it is an alias for LDC1
that is present in EduMIPS64 for compatibility with WinMIPS64.

	LDC1 ft, offset(base)

Description: memory[GPR[base] + offset]

Loads from memory a doubleword and stores it in ft.

	LWC1 ft, offset(base)

Description: ft = memory[GPR[base] + offset]

Loads from memory a word and stores it in ft.

	MFC1 rt, fs

Description: rt = readInt(fs)

Reads the fs FPR as an int and writes its value to the rt GPR as long.
Example:

MFC1 r6,f5
SD r6,mem(R0)

Let f5=0xAAAAAAAABBBBBBBB; MFC1 reads f5 as an int (lower 32 bits),
interpreting BBBBBBBB as -1145324613, and writes the value to f6
(64 bits). After the execution of MFC1, r6=0xFFFFFFFFBBBBBBBB =
-1145324613.
So the SD instruction will write to memory a doubleword with this value,
since the sign in r6 was extended.

	MOVF.D fd, fs, cc

Description: if FCSR_FCC[cc] == 0 then fd=fs

If FCSR_FCC[cc] is false, the copies fs to fd.

	MOVT.D fd, fs, cc

Description: if FCSR_FCC[cc] == 1 then fd=fs

If FCSR_FCC[cc] is true, the copies fs to fd.

	MOV.D fd, fs

Description: fd = fs

Copies fs to fd.

	MOVN.D fd, fs, rt

Description: if rt != 0 then fd=fs

If rt is not zero, copies fs to fd.

	MOVZ.D fd, fs, rt

Description: if rt == 0 then fd=fs

If rt is equal to zero, copies fs to fd.

	MTC1 rt, fs

Description: fs = rt 0..31

Copies the lower 32 bit of rt to fs.

Example:

MTC1 r6,f5

Let r5=0xAAAAAAAABBBBBBBB; MTC1 reads the lower 32 bits of r5
copying them to the 32 lower bits of f5. The higher 32 bits of f5 are not
overwritten.

	MUL.D fd, fs, ft

Description: fd = fs × ft

Exceptions: Overflow or Underflow are raised if the results cannot be
represented using the IEEE 754 standard. Invalid Operation is raised if fs
or ft contain QNaN or SNan, or if an invalid operation is executed (multiply
by ∞ OR BY QNaN).

	S.D ft, offset(base)

Description: memory[base+offset] = ft

Copies ft to memory.

Nota

S.D is not present in the MIPS64 ISA, it is an alias for SDC1
that is present in EduMIPS64 for compatibility with WinMIPS64.

	SDC1 ft, offset(base)

Description: memory[base+offset] = ft

Copies ft to memory.

	SUB.D fd, fs, ft

Description: fd = fs-ft

Exceptions: Overflow and underflow traps are generated if the result
cannot be represented according to IEEE 753. Invalid operation is raised if
fs or ft contain QNaN or SNan, or if an invalid operation (+∞ - ∞) is
executed.

	SWC1 ft, offset(base)

Description: memory[base+offset] = ft

Copies the lower 32 bits of ft to memory.

The user interface

The GUI of EduMIPS64 is inspired to WinMIPS64 user interface. In fact, the
main window is identical, except for some menus.

The EduMIPS64 main window is composed by a menu bar and six frames, showing
different aspects of the simulation. There’s also a status bar, that has the
double purpose to show the content of memory cells and registers when you
click them and to notify the user that the simulator is running when the
simulation has been started but verbose mode is not selected.

The status bar also shows the CPU status. It can show one of the following four
states:

	READY The CPU hasn’t executed any instructions (no program is loaded).

	RUNNING The CPU is executing a series of instructions.

	STOPPING The CPU has found a termination instruction, and is executing the
instructions that are already in the pipeline before terminating the
execution.

	HALTED The CPU is stopped: a program just finished running.

Note that the CPU status is different from the simulator status. The
simulator may execute a number of CPU cycles and then stop executing,
allowing the user to inspect memory and registers: in this state, between CPU
cycles, the CPU stays in RUNNING or STOPPING state. Once the CPU reaches
the HALTED state, the user cannot run any CPU cycle without loading a
program again (the same program, or a different one).

There are more details in the following sections.

The menu bar

The menu bar contains six menus:

File

The File menu contains menu items about opening files, resetting or shutting
down the simulator, writing trace files.

	Open… Opens a dialog that allows the user to choose
a source file to open.

	Open recent Shows the list of the recent files opened by the
simulator, from which the user can choose the file to open

	Reset Resets the simulator, keeping open the file that was
loaded but resetting the execution.

	Write Dinero Tracefile… Writes the memory access data to a
file, in xdin format.

	Exit Closes the simulator.

The Write Dinero Tracefile… menu item is only available when a whole
source file has been executed and the end has been already reached.

Execute

The Execute menu contains menu items regarding the execution flow of the
simulation.

	Single Cycle Executes a single simulation step

	Run Starts the execution, stopping when the simulator reaches
a SYSCALL 0 (or equivalent) or a BREAK instruction, or
when the user clicks the Stop menu item (or presses F9).

	Multi Cycle Executes some simulation steps. The number of
steps executed can be configured through the Setting dialog.

	Stop Stops the execution when the simulator is in «Run»
or «Multi cycle» mode, as described previously.

This menu is only available when a source file is loaded and the end of the
simulation is not reached. The Stop menu item is available only in
«Run» or «Multi Cycle» mode.

Note that the simulator slows down when updating the UI. If you want to
execute long (thousands of cycles) programs quickly, disable the «Sync
graphics with CPU in multi-step execution» option.

Configure

The Configure menu provides facilities for customizing EduMIPS64 appearance and
behavior.

	Settings… Opens the Settings dialog, described
in the next sections of this chapter;

	Change Language Allows the user to change the language used
by the user interface. Currently only English and Italian are supported.
This change affects every aspect of the GUI, from the title of the frames to
the online manual and warning/error messages.

The Settings… menu item is not available when the simulator is in
«Run» or «Multi Cycle» mode, because of potential race conditions.

Tools

This menu contains only an item, used to invoke the Dinero Frontend dialog.

	Dinero Frontend… Opens the Dinero Frontend dialog.

This menu is not available until you have not executed a program and the
execution has reached its end.

Window

This menu contains items related to operations with frames.

	Tile Sorts the visible windows so that no more that three
frames are put in a row. It tries to maximize the space occupied by every
frame.

The other menu items simply toggle the status of each frame, making them
visible or minimizing them.

Help

This menu contains help-related menu items.

	Manual… Shows the Help dialog.

	About us… Shows a cute dialog that contains the names of
the project contributors, along with their roles.

Frames

The GUI is composed by seven frames, six of which are visible by default, and
one (the I/O frame) is hidden.

Cycles

The Cycles frame shows the evolution of the execution flow during time,
showing for each time slot which instructions are in the pipeline, and in
which stage of the pipeline they are located.

Registers

The Registers frame shows the content of each register. By left-clicking on
them you can see in the status bar their decimal (signed) value, while
double-clicking on them will pop up a dialog that allows the user to change
the value of the register.

Statistics

The Statistics frame shows some statistics about the program execution.

Note that during the last execution cycle the cycles counter is not
incremented, because the last execution cycle is not a full CPU cycle but
rather a pseudo-cycle whose only duties are to remove the last instruction
from the pipeline and increment the counter of executed instructions.

Pipeline

The Pipeline frame shows the actual status of the pipeline, showing which
instruction is in which pipeline stage. Different colors highlight different
pipeline stages.

Memory

The Memory frame shows memory cells content, along with labels and comments
taken from the source code. Memory cells content, like registers, can be
modified double-clicking on them, and clicking on them will show their
decimal value in the status bar.
The first column shows the hexadecimal address of the memory cell, and the
second column shows the value of the cell. Other columns show additional info
from the source code.

Code

The Code window shows the instructions loaded in memory. The first column shows
the address of the instruction, while the second column shows the hexadecimal
representation of the instructions. Other columns show additional info taken
from the source code.

Input/Output

The Input/Output window provides an interface for the user to see the output
that the program creates through the SYSCALLs 4 and 5. Actually it is not
used for input, as there’s a dialog that pops up when a SYSCALL 3 tries to
read from standard input, but future versions will include an input text box.

Dialogs

Dialogs are used by EduMIPS64 to interact with the user in many ways. Here’s a
summary of the most important dialogs:

Settings

In the Settings dialog various aspects of the simulator can be configured.
Clicking on the «OK» button will cause the options to be saved, while clicking
on «Cancel» (or simply closing the window) will cause the changes to be
ignored. Don’t forget to click «OK» if you want to save your changes.

The Main Settings tab allow to configure forwarding and the number of steps
in the Multi Cycle mode.

The Behavior tab allow to enable or disable warnings during the parsing phase,
the «Sync graphics with CPU in multi-step execution» option, when checked,
will synchronize the frames” graphical status with the internal status of the
simulator. This means that the simulation will be slower, but you’ll have an
explicit graphical feedback of what is happening during the simulation. If this
option is checked, the «Interval between cycles» option will influence how
many milliseconds the simulator will wait before starting a new cycle.
Those options are effective only when the simulation is run using the
«Run» or the «Multi Cycle» options from the Execute menu.

The last two options set the behavior of the simulator when a synchronous
exception is raised. If the «Mask synchronous exceptions» option is checked,
the simulator will ignore any Division by zero or Integer overflow exception.
If the «Terminate on synchronous exception» option is checked, the simulation
will be halted if a synchronous exception is raised. Please note that if
synchronous exceptions are masked, nothing will happen, even if the
termination option is checked. If exceptions are not masked and the
termination option is not checked, a dialog will pop out, but the simulation
will go on as soon as the dialog is closed. If exceptions are not masked and
the termination option is checked, the dialog will pop out, and the
simulation will be stopped as soon as the dialog is closed.

The last tab allows to change the appearance of the user interface. There are
options to change the colors associated to the different pipeline stages, an
option to choose whether memory cells are shown as long or double values and
an option to set the UI font size.

Note that the UI scaling with font size is far from perfect, but it should be
enough to make the simulator usable with high-resolution displays (e.g., 4k).

Dinero Frontend

The Dinero Frontend dialog allows to feed a DineroIV process with the trace
file internally generated by the execution of the program. In the first text
box there is the path of the DineroIV executable, and in the second one there
must be the parameters of DineroIV.

The lower section contains the output of the DineroIV process, from which you
can take the data that you need.

Help

The Help dialog brings up the on-line manual, which is an HTML copy of this
document.

Command line options

Four command line options are available. They are described in the following
list, with the long name enclosed in round brackets. Long and short names can
be used in the same way.

	-v (–version) prints the simulator version and exits.

	-h (–help) prints a help message with a brief summary of command line
options, then exits.

	-f (–file) filename opens filename in the simulator

	-r (–reset) resets the stored configuration to the default values

	-d (–debug) enters Debug mode

	-hl (–headless) Runs EduMIPS64 in headless mode (no gui)

The –debug flag has the effect to activate Debug mode. In this mode, a new
frame is available, the Debug frame, and it shows the log of internal
activities of EduMIPS64. It is not useful for the end user, it is meant to be
used by EduMIPS64 developers.

Code Examples

In this chapter you’ll find some sample listings that will be useful in
order to understand how EduMIPS64 works.

SYSCALL

It’s important to understand that examples for SYSCALL 1-4 refer to the
print.s file, that is the example for SYSCALL 5. If you want to run the
examples, you should copy the content of that example in a file named
print.s and include it in your code.

Some examples use an already existing file descriptor, even if it doesn’t truly
exist. If you want to run those examples, use the SYSCALL 1 example to open a
file.

SYSCALL 0

When SYSCALL 0 is called, it stops the execution of the program.
Example:

.code
 daddi r1, r0, 0 ; saves 0 in R1
 syscall 0 ; exits

SYSCALL 1

Example program that opens a file:

 .data
error_op: .asciiz "Error opening the file"
ok_message: .asciiz "All right"
params_sys1: .asciiz "filename.txt"
 .word64 0xF

 .text
open: daddi r14, r0, params_sys1
 syscall 1
 daddi $s0, r0, -1
 dadd $s2, r0, r1
 daddi $a0,r0,ok_message
 bne r1,$s0,end
 daddi $a0,r0,error_op

end: jal print_string
 syscall 0

 #include print.s

In the first two rows we write to memory the strings containing the error
message and the success message that we will pass to print_string function, and
we give them two labels. The print_string function is included in the print.s
file.

Next, we write to memory the data required from SYSCALL 1 (row 4, 5), the
path of the file to be opened (that must exist if we work in read or
read/write mode) and, in the next memory cell, an integer that defines the
opening mode.

In this example, the file was opened using the following modes:
O_RDWR | O_CREAT | O_APPEND. The
number 15 (0xF in base 16) comes from the sum of the values of these three
modes (3 + 4 + 8).

We give a label to this data so that we can use it later.

In the .text section, we save the address of params_sys1 (that for the
compiler is a number) in register r14; next we can call SYSCALL 1 and save
the content of r1 in $s2, so that we can use it in the rest of the program
(for instance, with other SYSCALL).

Then the print_string function is called, passing error_op as an argument if
r1 is equal to -1 (rows 13-14) or else passing ok_message as an argument if
everything went smoothly (rows 12 and 16).

SYSCALL 2

Example program that closes a file:

 .data
params_sys2: .space 8
error_cl: .asciiz "Error closing the file"
ok_message: .asciiz "All right"

 .text
close: daddi r14, r0, params_sys2
 sw $s2, params_sys2(r0)
 syscall 2
 daddi $s0, r0, -1
 daddi $a0, r0, ok_message
 bne r1, $s0, end
 daddi $a0, r0, error_cl

end: jal print_string
 syscall 0

 #include print.s

First we save some memory for the only argument of SYSCALL 2, the file
descriptor of the file that must be closed (row 2), and we give it a label so
that we can access it later.

Next we put in memory the strings containing the error message and the success
message, that will be passed to the print_string function (rows 3, 4).

In the .text section, we save the address of params_sys2 in r14; then we can
call SYSCALL 2.

Now we call the print_string function using error_cl as a parameter if r1
yields -1 (row 13), or we call it using ok_message as a parameter if all went
smoothly (row 11).

Note: This listing needs that registry $s2 contains the
file descriptor of the file to use.

SYSCALL 3

Example program that reads 16 bytes from a file and saves them to memory:

 .data
params_sys3: .space 8
ind_value: .space 8
 .word64 16
error_3: .asciiz "Error while reading from file"
ok_message: .asciiz "All right"

value: .space 30

 .text
read: daddi r14, r0, params_sys3
 sw $s2, params_sys3(r0)
 daddi $s1, r0, value
 sw $s1, ind_value(r0)
 syscall 3
 daddi $s0, r0, -1
 daddi $a0, r0,ok_message
 bne r1, $s0,end
 daddi $a0, r0,error_3

end: jal print_string
 syscall 0

 #include print.s

The first 4 rows of the .data section contain the arguments of SYSCALL 3, the
file descriptor of the from which we must read, the memory address where the
SYSCALL must save the read data, the number of bytes to read. We give labels
to those parameters that must be accessed later. Next we put, as usual, the
strings containing the error message and the success message.

In the .text section, we save the params_sys3 address to register r14, we save
in the memory cells for the SYSCALL parameters the file descriptor (that we
suppose to have in $s2) and the address that we want to use to save the read
bytes.

Next we can call SYSCALL 3, and then we call the print_string function
passing as argument error_3 or ok_message, according to the success of the
operation.

SYSCALL 4

Example program that writes to a file a string:

 .data
params_sys4: .space 8
ind_value: .space 8
 .word64 16
error_4: .asciiz "Error writing to file"
ok_message: .asciiz "All right"
value: .space 30

 .text

write: daddi r14, r0,params_sys4
 sw $s2, params_sys4(r0)
 daddi $s1, r0,value
 sw $s1, ind_value(r0)
 syscall 4
 daddi $s0, r0,-1
 daddi $a0, r0,ok_message
 bne r1, $s0,end
 daddi $a0, r0,error_4

end: jal print_string
 syscall 0

 #include print.s

The first 4 rows of the .data section contain the arguments of SYSCALL 4, the
file descriptor of the from which we must read, the memory address from where
the SYSCALL must read the bytes to write, the number of bytes to write. We
give labels to those parameters that must be accessed later. Next we put, as
usual, the strings containing the error message and the success message.

In the .text section, we save the params_sys4 address to register r14, we save
in the memory cells for the SYSCALL parameters the file descriptor (that we
suppose to have in $s2) and the address from where we must take the bytes to
write.

Next we can call SYSCALL 3, and then we call the print_string function
passing as argument error_3 or ok_message, according to the success of the
operation.

SYSCALL 5

Example program that contains a function that prints to standard output the
string contained in $a0:

 .data
params_sys5: .space 8

 .text
print_string:
 sw $a0, params_sys5(r0)
 daddi r14, r0, params_sys5
 syscall 5
 jr r31

The second row is used to save space for the string that must be printed by the
SYSCALL, that is filled by the first instruction of the .text section, that
assumes that in $a0 there’s the address of the string to be printed.

The next instruction puts in r14 the address of this string, and then we can
call SYSCALL 5 and print the string. The last instruction sets the program
counter to the content of r31, as the usual MIPS calling convention states.

A more complex usage example of SYSCALL 5

SYSCALL 5 uses a not-so-simple arguments passing mechanism, that will be
shown in the following example:

 .data
format_str: .asciiz "%dth of %s:\n%s version %i.%i is being tested!"
s1: .asciiz "June"
s2: .asciiz "EduMIPS64"
fs_addr: .space 4
 .word 5
s1_addr: .space 4
s2_addr: .space 4
 .word 0
 .word 5
test:
 .code
 daddi r5, r0, format_str
 sw r5, fs_addr(r0)
 daddi r2, r0, s1
 daddi r3, r0, s2
 sd r2, s1_addr(r0)
 sd r3, s2_addr(r0)
 daddi r14, r0, fs_addr
 syscall 5
 syscall 0

The address of the format string is put into R5, whose content is then saved to
memory at address fs_addr. The string parameters” addresses are saved into
s1_addr and s2_addr. Those two string parameters are the ones that match the
two %s placeholders in the format string.

Looking at the memory, it’s obvious that the parameters matching the
placeholders are stored immediately after the address of the format string:
numbers match integer parameters, while addresses match string parameters. In
the s1_addr and s2_addr locations there are the addresses of the two strings
that we want to print instead of the %s placeholders.

The execution of the example will show how SYSCALL 5 can handle complex format
strings like the one stored at format_str.

Indice

 nav.xhtml

 Table of Contents

 		
 Welcome to the EduMIPS64 documentation!

 		
 Source files format

 		
 Memory limits

 		
 The .data section

 		
 The .code section

 		
 The #include command

 		
 The instruction set

 		
 ALU Instructions

 		
 Load/Store instructions

 		
 Flow control instructions

 		
 The SYSCALL instruction

 		
 SYSCALL 0 - exit()

 		
 SYSCALL 1 - open()

 		
 SYSCALL 2 - close()

 		
 SYSCALL 3 - read()

 		
 SYSCALL 4 - write()

 		
 SYSCALL 5 - printf()

 		
 Other instructions

 		
 BREAK

 		
 NOP

 		
 TRAP

 		
 HALT

 		
 Floating Point Unit

 		
 Special values

 		
 NaN or Invalid Operation

 		
 Zeroes or Underflows

 		
 Infinites or Overflows

 		
 Exception configuration

 		
 The .double directive

 		
 The FCSR register

 		
 Instruction set

 		
 The user interface

 		
 The menu bar

 		
 File

 		
 Execute

 		
 Configure

 		
 Tools

 		
 Window

 		
 Help

 		
 Frames

 		
 Cycles

 		
 Registers

 		
 Statistics

 		
 Pipeline

 		
 Memory

 		
 Code

 		
 Input/Output

 		
 Dialogs

 		
 Settings

 		
 Dinero Frontend

 		
 Help

 		
 Command line options

 		
 Code Examples

 		
 SYSCALL

 		
 SYSCALL 0

 		
 SYSCALL 1

 		
 SYSCALL 2

 		
 SYSCALL 3

 		
 SYSCALL 4

 		
 SYSCALL 5

 		
 A more complex usage example of SYSCALL 5

_static/minus.png

_static/plus.png

_static/file.png

